Neural Information Processing

Neural Information Processing

My laboratory investigates human perception combining psychophysical experiments with computational modelling. Currently we have four research foci: First, to improve our image-based model of early spatial vision. Second, to connect early spatial vision with mid-level vision: perceived lightness, brightness and contrast in relation to surface reflectance and illumination in images of real scenes. Third, we investigate differences and similarities between deep convolutional neural networks and human object recognition. Fourth, we explore connections between causality from a perceptual as well as a machine learning perspective.
For more information please visit www.wichmannlab.org

Selected Publications

Geirhos, Temme, Rauber, Schütt, Bethge and Wichmann (2018). Generalisation in humans and deep neural networks. Advances in Neural Information Processing Systems (NeurIPS) 31.
Geirhos, Rubisch, Michaelis, Bethge, Wichmann and Brendel (2019). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. International Conference on Learning Representations (ICLR), 2019.
Meding, Janzing, Schölkopf and Wichmann (2019). Perceiving the arrow of time in autoregressive motion. Advances in Neural Information Processing Systems (NeurIPS) 32.
Schütt and Wichmann (2017). An image-computable psychophysical spatial vision model. Journal of Vision, 17(12):12, 1–35.
Wichmann and Jäkel (2018). Methods in Psychophysics. Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience, Fourth Edition, Volume 5. Methodology


Group Leader and Further Information

Felix Wichmann
Neural Information Processing
Werner Reichardt Centre for Integrative Neuroscience
Bernstein Center for Computational Neuroscience
Computer Science Department
Maria-von-Linden Str. 6
72076 Tübingen
Germany

Phone: +49 (0)7071 29 70421
Write an E-Mail