Neural Circuits of Vision

Visual information processing across different levels of the early visual system

For most animals including humans, vision is the dominant sense and a large fraction of the brains computational power is devoted to processing the incoming stream of visual information. This already starts in the eye. Here, unlike a simple camera, the retina extensively processes the visual input by extracting separate information channels like contrast, motion or edges. In my lab, we seek to understand how this disassembly of a complex visual input stream is performed by retinal circuits using two-photon population calcium and glutamate imaging in the ex-vivo mouse retina.

For example, we have recently investigated how color – a distinct visual feature – arises within the retinal network by recording light responses to colored stimuli all the way from photoreceptors to the retinal output. This revealed that neural circuits in the mouse retina are exquisitely tuned to extract color information from the upper visual field (Szatko, Korympidou et al. 2019), where it might aid robust detection of aerial predators and ensure the animal´s survival. Interestingly, our findings may explain recent behavioral data (Denman et al. 2018), demonstrating that mice are better at discriminating light spots of different colors in the upper compared to the lower visual field.

My lab is also interested in studying how the representation of specific visual features changes from the retina to downstream visual targets in the brain, like superior colliculus and primary visual cortex. In collaboration with Prof. Andreas Tolias at Baylor College of Medicine, Houston, we are currently studying how color information is further processed in mouse visual cortex. By systematically following the visual signal across consecutive processing layers, we hope to uncover fundamental principles of how the brain processes visual information to generate a specific behavioral output.

Selected Publications

  1. Szatko* K, Korympidou* M, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke# K. (2020) Neural circuits in the mouse retina support color vision in the upper visual field. Nature Communications, 10.1038/s41467-020-17113-8.
  2. Franke# K, Vlasits A. (2020) Unblinding with infrared nanosensors.  Science10.1126/science.abc2294.
  3. Ran* Y, Huang* Z, Baden T, Schubert T, Baayen H, Berens# P, Franke# K, Euler# T. (2020) Type-specific dendritic integration in mouse retinal ganglion cells. Nature Communications, 10.1038/s41467-020-15867-9.
  4. Zhao Z, Klindt K, Maia Chagas A, Szatko K, Rogerson L, Protti D, Behrens C, Dalkara D, Schubert T, Bethge M, Franke# K, Berens# P, Ecker# A, Euler# T. (2020) The temporal structure of the inner retina at a single glance. Scientific Reports, 10.1038/s41598-020-60214-z.
  5. Schröder C, Klindt D, Strauß S, Franke K, Bethge M, Euler T, Berens P. (2020) System Identification with Biophysical Constraints: A Circuit Model of the Inner Retina. bioRxiv10.1101/2020.06.16.154203.
  6. Oesterle J, Behrens C, Schröder C, Herrmann T, Euler T, Franke K, Smith RG, Zeck G, Berens P. (2020) Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics. bioRxiv10.1101/2020.01.08.898759.
  7. Franke* K, Maia Chagas* M, Zhao Z, Zimmermann M, Qiu Y, Szatko K, Baden T, Euler T. (2019) An arbitrary-spectrum spatial visual stimulator for vision research. An arbitrary-spectrum spatial visual stimulator for vision research. eLife, 10.7554/eLife.48779.
  8. Euler T, Franke K, Baden T (2019) Studying a Light Sensor with Light: Multiphoton Imaging in the Retina. In: Hartveit E. (eds) Multiphoton Microscopy. Neuromethods, vol 148. Humana, New York, NY, 10.1007/978-1-4939-9702-2_10
  9. Dhande O, Stafford B, Franke K, El-Danaf R, Percival K, Phan A, Li P, Hansen B, Nguyen P, Berens P, Taylor WR, Callaway E, Euler T, Huberman A. (2019) Molecular fingerprinting of On-Off direction selective retinal ganglion cells across species and relevance to primate visual circuits. Journal of Neuroscience, 10.1523/JNEUROSCI.1784-18.2018.
  10. Vlasits A, Euler T, Franke K. (2018) Function first: classifying cell types and circuits of the retina. Curr Op Neurobiol 10.1016/j.conb.2018.10.011.
  11. Franke K, Baden T. (2017) General features of inhibition in the inner retina. Journal of Physiology; 10.1113/JP273648
  12. Franke* K, Berens* P, Schubert T, Bethge M, Euler T, Baden T. (2017) Inhibition decorrelates visual feature representations in the inner retina. Nature 10.1038/nature21394.
  13. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 10.1038/nature16468.

Group leader and lab members

Katrin Franke
Neural Circuits of Vision
Werner Reichardt Centre for Integrative Neuroscience
Otfried-Mueller-Str. 25
72076 Tübingen

Phone: +49 (0)7071 29-84755
Write an E-Mail